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Quantum detector in an accelerated cavity

Orit Levin, Yoav Peleg and Asher Peres
Department of Physics, Technion, Israel Institute of Technology, 32 000 Haifa, Israel

Received 2 December 1991

Abstract. A quanium feld and a detector are enclosed in a uniformly accelerated cavity.
The fiel is in its ground state. If the detector is accelerated together with the cavity,
it will not be excited by the vacuum fuctuations of the field. On the other hand, an
inertial detector will be excited.

1. Vacuum ﬂuctuations

In quantum field theory, the ‘vacuum’ is defined as the lowest energy state of a field—
that is a dynamical system with an infinite number of degrees of freedom. A free field
with linear equations of motion can be resolved into normal modes, such as standing
waves. Each mode has a fixed frequency, w, and behaves as a harmonic oscillator.
Quantum theory then predicts that the vacuum fluctuations (namely, the zero point
motion of all these harmonic oscillators} can excite a suitable detector from a lower
to a higher energy level. For example, a detector moving with a constant acceleration
g in a Minkowski vacuum reacts as if it were in a thermal bath (Davies 1975, Unruh
1976). This is called the Unruh effect. It is related to the fluctuation—dissipation
theorem (Candelas and Sciama 1977) and results from the autocorrelation of the
field variables along the world line of the detector. The vacuum fluctuations appear
to have a Planckian spectrum, with a temperature kT = gh/2wc.

For any reasonable linear acceleration, this temperature is exceedingly low. The
issue which motivated this article is whether the Unruh effect is observable, as a
matter of principle. Leaving aside any mundane technological considerations, we must
at least verify that we have a ‘true’ vacuum, rather than black-body radiation due to
the cosmic background or to other sources. The detector must therefore be shielded
from parasitic sources, and moreover we must cool the walls of the enclosure where
the experiment is performed, to well below the Unruh temperature.

This, however, creates a radically new situation, because the presence of
boundaries affects the dynamical properties of a quantum field by altering the
frequencies of its normal modes. Finite-size effects have been known for a long
time, both theoretically (Casimir 1948) and experimentally (Spaarnay 1938). A recent
discussion by Gerlach (1989) follows an approach similar 1o ours. In the present
problem, boundary effects cannot be neglected if the field is restricted to a domain
smaller than the wavelength corresponding to the Unruh temperature, which is about
c%/g (one light-year for the Earth’s g).

Tb gain a better understanding of the respective toles played by the detector and
by the radiation modes, we consider here a closely related problem, that of a quantum

0305-4470/92/236471 +11507.50 © 1992 10P Publishing Lid 6471



6472 O Levin et al

field in a uniformly accelerated cavity. It is convenient to use dimensionless Rindler
coordinates @ and £, defined by

ct = Lefsinh 0 and z = Lef cosh @ 6h)

where L is an arbitrary constant with the dimensions of a length. Any world line
with constant £ has (in the original Lorentz frame) a constant proper acceleration
g = c*/ Lef, as can be seen from z? = c*1? + Le¥,

Note that the Rindler coordinates cover only the wedge = > |ct|. They are
iltustrated in figure 1, where & and £, are the ‘floor’ and ‘ceiling’ of the cavity,
respectively. (The y and z coordinates are ignored, for simplicity. However, most of
the results presented here remain valid in a three-dimensional space.)
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Figure 1. The shaded area is the world tube swept by an accelerated cavity, in Minkowski
and Rindler coordinates (the latter cover only the wedge z > ¢|t|). The thick line
between the floor £) and the ceiling £ is the world line of a detector at rest in the
cavity. The large white arrow represents the ballistic trajectory of an inertial detector.
The small arrows represent the Killing vector field.

In the Minkowski and Rindler coordinate systems, the metric is
ds? = 2 dt? — da? = L2eX(d6? — de?). (2)

This metric admits a Killing vector ficid which is everywhere regular, namely K% = 1,
K¢ = 0 (or, in the original coordinates, cK* = x, K* = ct). This vector field is
time-like in the Rindler wedge = > clt| and, in particular, within the spacetime
domain swept by the cavity. Therefore, it is legitimate to use @ as a time coordinate
within the cavity (£; < £ < &,); the metric properties of the latter then appear stasic.
An increase in cavity time, 8 — 8’ = 6+ p, corresponds in the Minkowski coordinates
to a Lorentz transformation: (z &+ ¢t) — (2’ £ ct') = e*?(2 £ et). The increment
p is called the rapidity of the transformation, and is related to the relative velocity of
the two frames by v = ctanh p.

The existence of a time-like Killing vector implies the conservation of a physical
quantity which is analogous to an energy. In the present case, this conserved quantity
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is not the one that is called ‘energy’ in the Minkowski coordinate system, but rather
corresponds to the generator of a Lorentz boost, as explained earlier. Its conservation
guarantees that a quantum detector, at rest within the cavity and prepared in its lowest
‘energy’ state (with the new meaning of the word ‘energy’), cannot be spontaneously
excited to a higher state if the field too is in its ground state (the vacuum). Therefore
no Unruh effect will be observed in such an experimental setup.

The same argument is clearly valid for any uniformly accelerated three-
dimensional cavity of arbitrary shape. By “uniformly accelerated’ we mean that the
round-trip time of a light signal between any two points located on the cavity boundary
is independent of time. For example, in our one-dimensional cavity, the round-trip
time §; — £, — £, measured by an observer located at £, is 2Le%1 (&, — §,)/c and
is indeed independent of 6.

While a detector which is uniformly accelerated together with the cavity is not
excited by the vacuum fluctuations, it is nevertheless possible to observe, at least in
principle, the Unruh effect by releasing a detector in the cavity. The freely falling
detector will then appear to follow a ballistic trajectory as shown in figure 1, and
to be accelerated with respect to the normal modes (standing waves) of the field.
Conversely, in the Lorentz frame where the detector is at rest, these modes appear
to be accelerated. It is their autocorrelation, at the location of the detector, which
determines the probability of excitation of the latter.

In this article, we shall illustrate this process by means of a simple theoretical
model, involving a massless scalar field ¢ in two spacetime dimensions. Such a field
satisfies a conformally invariant wave equation which is, in Rindler coordinates,

a2 82
%?%“a—gfﬂ 3)

by virtue of equation (2). The normal modes satisfying ¢(&,,0) = ¢(£,,0) = 0 are

b, (£,0) = /2x [ sin[nr(€ — £)]eE"~0 @)
where
k=m/(&— &) =x]log(g/9;)- (%)

Here, g, and g, denote the proper accelerations of the “floor’ and “ceiling’ of the
cavity, respectively. For a cavity of laboratory size, and with reasonable accelerations,
g; and g, ar¢ almost equal, and therefore « is a large number. (The physical meaning
of « is that of an inverse cavity length, measured in units g/ c?.)

We shall later need the vacuum expectation value (Wightman function)

W', £"8") = (0|¢(€',0')o(£",6)]0)
= Y (#/mn)sinfnk(& — &) sin[nw(€” - &))"~ (6)

n

This sum can be explicitly evaluated, but it is preferable to leave it in the present
form, which is more convenient for the calculations of section 3.
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2. Transitions between discrete levels

We now turn our attention to the detector. The latter has discrete energy levels, and
its interaction with the quantized field ¢ may cause transitions between these levels.
To determine the transition rate, one cannot use the familiar Fermi golden rule, since

the latter is valid only when there is a continuum of final states, and is not applicable
to transitions between discrete levels, For the discrete case, other prescriptions can
be found in the literature, that correspond to various interaction models. However,
we have not found any algorithm whose proof would be valid under the conditions
stipulated in the present problem. We have therefore derived the necessary formula
ab initio from first-order perturbation theory. Our approach has enough generality to
make the results derived here applicable to a large variety of other physical situations.

Consider two weakly coupled quantum systems, such as an ‘atom’ a (our detector)
having discrete energy levels, and a ‘background’ b, which may be a quantized field,
or a thermal bath, or any other physical object whose interaction with the atom
may cause quantum transitions. In the absence of coupling, the Hamiltonian is

Hy= H, + H,, where H_ is time-independent and has a discrete spectrum,
H,|m) = E,_, |m). (N

On the other hand, no such assumptions are made for fi,, which may explicitly
depend on time. The states of the background are described by an arbirrary
orthonormal basis |o}, and those of the combined system by the tensor product
of these two bases:

SO

im) ® |a). {8)

Ima)

The coupling between the two systems is assumed, for simplicity, to be a direct
product H,,, = A® B, where A and B denote two operators, belonging to the atom
and the background, respectively. The complete Schridinger equation thus is

indy/dt = (H, + Hy + A®@ B)¥ (9)

where 1) is a linear combination of the basis vectors (8). The ® sign will henceforth
be omitted, as there is no risk of confusion. Obviously, the operators A and B have
to be written in equation (9) in their Schrodinger representation. We assume that, in
that representation, A has no explicit time dependence (for example, it may be the
dipole moment of an atom) but no such assumption is made for B. We shall later
also need the Heisenberg representation of B, which is

By(t) = UM(t,4,) B(1)U(1,1,) (10

where U(t,t,) is a unitary operator satisfying
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with the initial condition U (¢,,1;) = 1.
We now expand

P(t) = Ut ty) Y el (t)|ma) (12)
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where
Emalt) = €Fn/A(mal U (2, 1) [ (1)). (a3

It is straightforward to show that the Schrddinger equation (9) is equivalent to

hdey,, (t)/dt = 3" eEm=Et/E 4 (o] By(t)|8)c, g (14)
np

where A, = (m|A|n).

Assume that the initial state of the combined system is given by equation (12)
with ¢;,(%y) = 1, and all other ¢, ({,) = 0. Here, |0} denotes one of the basis
states of the background subsystem. It may be the vacuum, or a thermal state, or
any other state resulting from the physical preparation of that background. We are
interested in the probability of finding the atom in a prescribed final state |f), at
time ¢, irrespective of the final state of the background. That probability is

P(t,t) = Y lega (P (15)

and depends on both the initial time ¢, and the final time ¢, if the background system
is not invariant under time translations (for example, the situation sketched in figure 1
is not invariant under a shift of ¢).
For the given initial conditions, and for any |f) orthogonal to the initial state of
the atom, equation (14) becomes, in first-order perturbation theory,
fidey, (1)/dt = e A (o] By(1)[0) (16)

where w = (E; — E;)/h. It follows that

t
ihcfa(t) = A_f;'[ et (o] By(1')|0) dt’ (17
0
and therefore

1 i
P(tt0) = A/ [ [ &'~ ST 0By () o) el By(e) 0y at' at"
tg J1y o

i t
= A, /0] f j U= 101 By (41) By (£7)|0) de’ dt (18)
g Jip

This result is valid as long as }_, P(t,%,) < 1. For longer times, first-order
perturbation theory becomes inadequate.

In the elementary cases that are commonly discussed in the literature, By (t) is
assumed to be a stationary random function, so that the expression

W (t',t") = (0| By(t'} Bu(")[0) (19)

depends only on the time difference t” — t'. Moreover, it is usually assumed that,
if |t —~ t'| is larger than a brief ‘coherence time’, then |W(¥',1")| « W(¢', t').
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However, none of these physical assumptions is valid in the present work, and
therefore more care is needed here,
Let us change the integration variables from ¢ and " to

r=t"-+t (20)
and

o= {t"+1)/2. (21)

The Jacobian of this transformation is 1. We first perform the integration over r, for
fixed o, and we obtain

! T |
P(t,t0)=|Aﬂ/ﬁ|2j: UTe‘WW(a-sz,a+r/2)dr de (22)

where T = 1,0 = — Ty, 18 a function of o, ¢, and ¢, as shown in figure 2.

2

\
rmuzz(o—ro)-.- \ T, =2(0-1)
.-2(: —0
7

Figure 2. Integration limits of + =" — ¢/, for a fixed value of & = (" + '} /2.

If the background system has a brief coherence time such that W — 0 for large
enough r, the integration limits £7 can be replaced by +co, and then the integration
OVer o B trivial. The lcpmu;mt:m of 7T Uy T00 may also be allowed even if W docs
not vanish for large =, but rather has increasingly rapid oscillations which mutually
cancel in the inner integral in equation (22). An example will be given in the next
section. In such cases, it is possible to define an instantaneous transition rate

oQ
T(t) = dP(t,1,}/dt = |Ah-/h|2/ e“TW(t—1/2,t+ 7/2)dr. (23)
— 00
It may come as a surprise that this formula has the same general appearance as
the one occurring in the fluctuation-dissipation theorem. For example, we obtain a
similar result when we consider quantum transitions induced by an external, classical,
stochastic force {Abragam 1961). On the other hand, there can be no doubt that the
derivation given here fully takes into account the quantum nature of the background
system. 1t does not rely on debatable semiclassical arguments {S@mtzkv 1978\ Tt s
based solely on the Schrodlnger equation, which mvolves only reversible dynamlcs
The dissipative nature of equation (23) is due to the sum over the final states
of the background, in the definition of P(t,t;). When we discard the background
degrees of freedom, there is an irreversible loss of information, and the density matrix
of the atom (or the detector) turns from a pure state into a mixture.



Quantum detector in an accelerated cavity 6477
3. Inertial detector in accelerated cavity

We shall assume for simplicity that our detector of vacuum fluctuations has only
two internal energy leve]s so that its internal state can be described with notation
appropnate to a spm-— particle. For a fully relativistic treatment of the detector’s
motion in spacetime, we shall assume that it is a point particle described by a local
field

X(r, ) = > (ag| 1) + by 1)ug(r, 1) + HC (24)
k

where a;, and b, are the annihilation operators for a detector in the normal mode
u(r, 1), with internal ‘spin’ up and down, respectwely

The Hamiltonian density for a detector moving in a scalar field ¢ will be taken

as
H=Hs+H,+x"wS, + 25, é)x (25)
where H,, involves only the detector’s position variables; the internal variables S,

and S, are the usual spin matrices (eigenvalues +#/2); w is a constant, such that
hw is the energy separation of the two levels of the detector in the rest frame of the
latter; and X is the detector’s coupling constant to the scalar field ¢. The interaction
term in this Hamiltonian density causes transitions between the internal levels of the
detector. The occurrence of a transition may be intetrpreted as the detection of a
vacuum fluctuation of the field.

If the energies involved in this process are low enough, compared to the detector’s
mass, there is no possibility of creation of detector-antidetector pairs, and it is a good
approximation to ignore virtual pairs as well. This means that onc can usc a first-
quantized formalism for the detector which is interacting with a second-quantized
scalar field. In quantum theory, the state vector i becomes a function of the
detector’s position r and of its internal ‘spin’ variable, and a functional of the field ¢
(that is a function of the amplitudes of all the normal modes—an infinite number of
variables). There is no inconsistency in this hybrid formalism. Its ciassical analogue
is the interaction of a point particle with a continuous field, which is a standard
approach to classical relativistic dynamics.

We further note that, in lowest-order perturbation theory, the detector's
translational degrees of freedom are not affected by the scalar field ¢. Therefore
if the detector is massive enough to be localized in a wavepacket much smaller
than the size of the cavity, its motion can be treated classically. This is a common
approximation which is certainly valid for particle orbits in electron microscopes or in
high-energy accelerators. The detector’s position » will henceforth be considered as
a prescribed function of the time t (not as an operator). In the Hamiltonian density
(25), H, becomes an irrelevant c-number that we may include in the background, or
simply ignore.

L 3 1 T Craheltdinoar rameacantatinm o edoe ta o ahla #6a 0n tha
WO ow ICLull lU uu: A LLEUU BCI l.GlJlUbCl.lLd IULL, HI ULULGL WU Ue auviv IV Do LG
results of the preceding section. Let ¢ be the Schrédinger representation of the

scalar field. With the approximations that were discussed above, the only remaining
terms of the Hamiltonian are

H=Hy+wS, + A5, &(r,1). (26)
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In the last term, the field is taken at the detector’s position », which is a prescribed
function of time,

To study a concrete example, we shall consider a segment of the detector’s
trajectory where = = constant (that is the detector is at rest in the zt Lorentz
frame, as seen in figure 1). Let us evaluate the transition rate, I'(t), between the
two Jevels of the detector. The symbols H, and H, that were used in the preceding
section correspond to w5, and H,, respectively. We expect I'(¢) to depend on the
detector’s position, since there is no translation invariance in a cavity of finite size.

In equation (18), we set

[Af2 = (AS,) = BN /4 (27)

and we recall that the symbol ¢ that was used in section 1 referred to the Heisenberg
representation of the free scalar field (namely, ¢ = ®y). Therefore W(t',1") is
the Wightman function given in equation (6), evaluated at a pair of points on the
detector’s trajectory. For our inertial detector (» = constant) we obviously have
jt| < =fc, as seen in figure 1, but we shall moreover assume, in order to simplify the
caiculations, that |t] < x/c (that is the position of the detector is always much closer
to the apogee of its orbit within the cavity than to the extremities of the latter). We
thus obtain, from equation (1),

6 =tanh~(ct/z) = (ct/x) + (ct/x)*/3+ - - (28)
and .
1 zt — ¢t i

Again to simplify the calculations, it is convenient to choose z, the height of the
orbit apogee, such that

log(z/L) = (& + £2)/2. (30)

This choice does not critically affect the final result, as will be shown later. With this
value of x, we have

sin{nik(€ — £;)] = sin(n7/2) — (32t /22*)nk os(nw/2) + O(t*) 31
whence
sin[ne(€ — £))]sin[nr(£” - £,)] = sin’(nw/2) + O(t*). (32)
If we had chosen a different value of z, there would be additional terms in (32) of
the order of log(xz/L) — (&, + £,)/2.
The absence of these terms and the omission of higher order corrections in (32)

considerably simplify the sum in equation (6), which will now oniy run over odd n
(we shall write it as 3'):

W ~ hg 1 inne-0) 33
™ n n
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This expression is periodic in 0” — 6, with period 2= /x. Obviously, there is no finite
‘coherence time’ in our problem,
We now rewrite W in terms of the variables + and o, defined in the preceding
section. From equation (28), we have

0" — ¢ = (tucfz) + (7 /122%) + O(F 3 [ %) (34)

u =1+ (co/z)2 (35)
The inner integral in equation (22) becomes

nKUC

I{o,t,t;) = / L —exp 111'

ir3 228 de (36)

Each term of the sum can now be evaluated by the method of steepest descents
(Erdélyi 1956). Let a® = w + nxucf/z and b = nxc’ /423, and consider 7 as a
complex variable. The exponent in (36) has extrema (saddle points in the complex =

nlnnp\ at T = +ia/b. The integration nath nrmma"u defined as a seoment on the
plang) at *i1g /6. The integration path, origr gefined as a gefm on th

real axis, can be distorted so as to pass through one of these saddle points. We write
r =( +ia/b, so that

exp(ia’r + b7 /3) = exp(—ab(? — 2¢°/3b 4 b2 (3 /3). 1)}

In the vicinity of the saddle point { = 0, this expression behaves like a Gaussian with
a peak of width (ab)~'/2, This peak will give the main contribution to the integral if
its width is well inside the original integration domain, that is if

T3> [(w+ 'nltleu.c/a:)('.v”.r,mc3/4:x:3)]"1/‘4 > (wke 43y~ 14 (38)
which means that both
(o —t,) and (t — &) > (z/e)(de/zwr)V?, (39)

Recall that «, which is given by equation (5), the inverse cavity length in units g/ 72,
and is a very large number for a cavity of reasonable size. Likewise, zw/c is very
large, if the detector has a reasonable energy splitting fiw. Therefore the inequalities

2N ara wall caticfiad awveant whan + ~ 2 and + ~ # namaly naar the lawar laft and
(JA) div Widl Jalslivd, vavvpL wilvdl U o by alid U — 4, uuulvlJ e UL UYYRL il dlliu

upper right corners of the square in figure 2.
We shall henceforth restrict our attention to observation times that are long
enough,

t— tu>(m/c)(4c/mwn)l/4 40y

so that both inequalities in (39) are satisfied, and yet are short enough to have
Y ; P(1,t) < 1, as otherwise perturbation theory would not be valid. These
conditions on the observation time are similar to those that have to be imposed in the
case of transitions to a continuum, if we want to obtain a roughly exponential decay
law: if the observation time is too short or too long, the decay law of an unstable
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system is not exponential (Peres 1980). In the present case too, the existence of three
widely different time scales is essential for the validity of our results.

If equation (40) is satisfied, we make only a negligible error if we replace, in
equation (36), the finite integration limits +7 by +oo. This is an example of the
situation discussed at the end of the preceding section: the integrand in (36) does
not vanish for large ||, but it has increasingly rapid oscillations, due to the 73 term
in the exponent, and these oscillations mutually cancel.

With the new integration limits +oc, each term of the sum in (36) can be expressed
by means of Airy functions (Abramowitz and Stegun 1968), giving

P =5 [ 2 () 5w () "2 r 22 e

Since w > ¢/, the argument of the Airy function is large and we can replace that
function by its asymptotic expansion

LI 2 3
2\/}_ exp( 37 . (42)

This is a rapidly decreasing function of z, and the main contribution to the sum in
equation (41) obviously comes from those n for which 2 is minimal. This minimum
occurs for

2en = ewfeu=N 43)

which is a very large number. The fact that high -frequency modes arc those which

snantribhnta mngt tn P4 +4Y gunnnste anare ineni muace that tha nracica Inratinn AF
LULLTIOUWG st WU 571, bul SUPPUILy Ul uuuu.lvu Loy didl Lot Pl iia Uil [H1

the detector, namely &, = 1(&, + &), has no critical influence and that the transition
probability is a smooth function of z and t.

The next step is to expand the exponent in (42} into a Taylor series around its
maximum, giving

exp (_.§z3/2) ~ exp (—2\/§Nus/2) exp [(2nrc — NPT VAN] . @“4)

As the main contribution to the sum in (41) comes from a relatively narrow range,
An € n =~ Nf2x, it is a good approximation to replace all the coefficients n by
N/2x (except in the last exponent) and then to substitute

q J ..l Iy s AN
—rj anjz {43)
0

Moreover, we can replace the lower integration limit ¢ by —oo, with a negligible
error. This pives a Gaussian integral which is readily evaluated, and we finally obtain

} Ak [ a=V3uMiN ﬁ [te-lm;cw/cdg_

P(t,1, de = (46)
o 4o Jy,
Therefore the transition rate is
A2H
F(t) — dP(t’tU) — __"e-2\/'37xw/c. (47)

dt T 4w
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Note that /uz = (2% + ¢2t*)!/2, 5o that T" depends on the detector’s position within
the cavity, a3 we expected. It is maximal when the detector is at the highest point of
its ballistic orbit. At that point, the relative acceleration of the vacuum fluctuations,
with respect to the inertial detector, is g = ¢?/z. We thus have

)\2 2 .
= % e--ZﬁEc/gh (48)

where E = Aw is the energy difference between the two levels.

This result holds only for transitions from the ground state to the excited state
(w > 0), because the various approximations that we have just made would not be
valid for w < 0. For de-excitations (w < 0), the Airy functions have a negative
argument, which gives them an oscillatory behaviour (Abramowitz and Stegun 1968).

The exponential factor in equation (48) must then be replaced by a complicated

expression, of order unity, whose exact value is practically irrelevant: for reasonable
values of E and g, the exponent in (48), is a large negative number, and T is so
small that the probability of finding the detector in its ground state is always close to
1

The transitions between the two levels will therefore reach equilibrium (if there
is e I1 time for that, which denendq on the strength of the cmmlma constant ,\\

whe the respective occupation numbers are in a ratio close to e'z‘/_Ec/ A ie. as
if the detector had a temperature kT = g/i/2v/3c. This is higher than the Unruh
temperature (for a lineatly accelerated detector in a Minkowski vacuum) by a factor
w/\/§ ~ 1.8. However, this cannot be considered as a tru¢ thermal equilibrium,
because the typical wavelength of thermal radiation at that temperature, about ¢?/g,
would be many orders of magnitude larger than the size of the cavity.
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