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Quantum detector in an accelerated cavity 

Ont Levin, Yoav Peleg and &her Peres 
Depanment of Physic$ Itchnion, Israel Institute of 'khnology, 32mO Haifa, lsrael 

Received 2 December 1991 

AbstmcL A quantum field and a detector are enclosed in a uniformly accelerated cavity. 
The 6eld is in its ground stale. If the detector b accelernred together with the cavity, 
it will M I  be excited by the vacuum flunuations of the field. On the other hand, an 
btatial detector will be excited. 

1. hcuum fluctuations 

In quantum field theory, the 'vacuum' is defined as the lowest energy state of afild- 
that is a dynamical system with an infinite number of degrees of freedom. A free field 
with linear equations of motion can be resolved into normal modes, such as standing 
waves. Each mode has a k e d  frequency, w,  and behaves as a harmonic oscillator. 
Quantum theory then predics that the vacuum fluctuations (namely, the zero p i n t  
motion of all these harmonic oscillators) can excite a suitable detector from a lower 
to a higher energy level. Fbr example, a detector moving with a constant acceleration 
g in a Minkowski vacuum reacts as if it were in a thermal bath (Davies 1975, Unruh 
1976). This is called the Unruh effect. It is related to the Ructuation4sipation 
theorem (Candelas and Sciama 1977) and results from the autocorrelation of the 
field variables along the world line of the detector. The vacuum fluctuations appear 
to have a Planckian spectrum, with a temperature kT = gli/2rrc. 

For any reasonable linear acceleration, this temperature is exceedingly low. The 
issue which motivated this article is whether the Unruh effect is observable, as a 
matter ofprinciple. Leaving aside any mundane technological considerations, we must 
at least verify that we have a 'true' vacuum, rather than black-body radiation due to 
the msmic background or to other sources. The detector must therefore be shielded 
from parasitic sources, and moreover we must cool the walls of the enclosure where 
the experiment is performed, to well below the UNUh temperature. 

This, however, creates a radically new situation, because the presence of 
boundaries affects the dynamical properties of a quantum field by altering the 
frequencies of its normal modes. Finite-size effects have been known for a long 
time, both theoretically (Casimir 1948) and experimentally (Spaarnay 1958). A recent 
discussion by Gerlach (1989) follows an approach similar to ours. In the present 
problem, boundary effects cannot be neglected if the field is restricted to a domain 
smaller than the wavelength corresponding to the Unruh temperature, which is about 
cz/g (one light-year for the Earth's 9). 

Ib gain a better understanding of the respective roles played by the detector and 
by the radiation modes, we consider here a closely related problem, that of a quantum 
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field in a uniformly accelerated cavity. It is convenient to use dimensionless Rindler 
mordinates 0 and E ,  defined by 

ct = Let sinh0 and x = Let cosh 0 (1) 

where L is an arbitraly constant with the dimensions of a length. Any world line 
with constant E has (in the original Lorentz frame) a constant proper acceleration 
g = c2/Let ,  as can be Seen from x2 = czt2 + Le2<. 

Note that the Rindler coordinates cover only the wedge I > Ictl.  They are 
illustrated in figure 1, where E ,  and Ez are the 'floor' and 'ceiling' of the cavity, 
respectively. (The y and z coordinates are ignored, for simplicity. However, most of 
the result3 presented here remain valid in a three-dimensional space.) 

P@m 1. The shaded area is the world tube swept by an accelerated cavity, in Minkowski 
and Rindler mordinates (the latter mer  only the wedge z > c l t l ) .  The thick tine 
between the floor E1 and the ceiling & is the world tine of a detector at rest in lhe 
cavity. l%he large white arrow represents the ballistic trajectory of an inenial delector. 
The small arrows represent the Killing vector field. 

In the Minkowski and Rindler coordinate systems, the metric is 

ds2 = cz dt2 - dz2 = L2ezc(d02 - dE2). (2) 

This metric admits a Killing vector field which is everywhere regular, namely lis = 1, 
Kc = 0 (or, in the original coordinates, clC' = z, K" = ct). This vector field is 
time-like in the Rindler wedge x > cltl and, in particular, within the spacetime 
domain swept by the cavity. Therefore, it is legitimate to use O as a time coordinate 
within the cavity ( E ,  < < F2) ;  the metric properties of the latter then appear sfaric. 
An increase in cavity time, 0 -+ 0' = O+p, corresponds in the Minkowski coordinates 
to a b r e n t z  transformation: (x f ct)  - (x' f ct') = e*p(z f ct). The increment 
p is called the mpidiry of the transformation, and is related to the relative velocity of 
the two frames by z1 = c tanh p. 

The existence of a time-like Killing vector implies the conservation of a physical 
quantity which is analogous to an energy. In the present case, this conserved quantity 
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is nol the one that is called 'energy' in the Minkowski coordinate system, but rather 
corresponds to the generator of a Lorentz boost, as explained earlier. Its conservation 
guarantees that a quantum detector, at rest within the cavity and prepared in its lowest 
'energy' state (with the new meaning of the word 'energy'), cannot be spontaneously 
excited to a higher state if the field too is in its ground state (the vacuum). Therefore 
no Unruh effect will be obsetved in such an experimental setup. 

The same argument is clearly valid for any uniformly accelerated three- 
dimensional cavity of arbitrary shape. By 'uniformly accelerated' we mean that the 
round-trip time of a light signal between any two points located on the cavity boundary 
is independent of time. Wr  example, in our one-dimensional cavity, the round-trip 
time t, - E2 + ,fl, measured by an observer located at ,fl,  is 2LeC1(E2 - t l ) /c and 
is indeed independent of 0. 

While a detector which is uniformly accelerated together with the cavity is not 
excited by the vacuum fluctuations, it is nevertheless possible to observe, at least in 
principle, the Unruh effect by relearing a detector in the cavity. The freely falling 
detector will then appear to follow a ballistic trajectory as shown in figure 1, and 
to be accelerated with respect to the normal modes (standing waves) of the field. 
Conversely, in the Lorentz frame where the detector is at rest, these modes appear 
to be accelerated. It is their autocorrelation. at the location of the detector, which 
determines the probability of excitation of the latter. 

In this article, we shall illustrate this process by means of a simple theoretical 
model, involving a massless scalar field 4 in two spacetime dimensions. Such a field 
satisfies a conformally invariant wave equation which is, in Rindler coordinates, 

by virtue of equation (2). The normal modes satisfying 4( C I ,  e )  = &( t2, e )  = 0 are 

(4) +,(c,s) = m s i n [ n n ( t  - ~~)]e* ' ""@ 

where 

n = r/(tz-t1) = r/Iog(g1/92). (5) 

Here, g1 and gz denote the proper accelerations of the 'floor' and 'ceiling' of the 
cavity, respectively. For a cavity of laboratory size, and with reasonable accelerations, 
g, and g2 are almost equal, and therefore n is a large number. (The physical meaning 
of n is that of an inverse cavity length, measured in units g/rc2.) 

We shall later need the vacuum expectation value (Wightman function) 

w(tw,E"e") = (ol+(t', e')+((", ei')io) 
= C(t i / r rn)s in[nn( t '  - cl)] sin[nn(t" - ~I)~ei71L(@"-s ' ) .  (6) 

n 

This sum can be explicitly evaluated, but it is preferable to leave it in the present 
form, which is more convenient for the calculations of section 3. 
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2. W"tions between discrete levels 

We now turn our attention to the detector. The latter has discrete energy levels, and 
its interaction with the quantized field 4 may cause transitions between these levels. 
'Ib determine the transition rate, one cannot use the familiar Fermi golden rule, since 
the latter is valid only when there is a continuum of final states, and is not applicable 

be found in the literature, that correspond to various interaction models. However, 
we have not found any algorithm whose proof would be valid under the conditions 
stipulated in the present problem. We have therefore derived the necessary formula 
ub initio from f i rs tader  perturbation theory. Our approach has enough generality to 
make the results derived here applicable to a large variety of other physical situations. 

having discrete energy levels, and a 'background' b, which may be a quantized field, 
or a thermal bath, or any other physical object whose interaction with the atom 
may cause quantum transitions. In the absence of coupling, the Hamiltonian is 
H ,  = H ,  + H,, where Ha is time-independent and has a discrete spectrum, 

!n !r2!!sitiGPs hphUePn dk,;....!. !eVp!s. !%r !!?e dkClPtP ax, a!her prscri.:pt;..ns. can 

rnnsider two wealdy mopled quantum systems, such as a!! 'atom' a. (our detector) 

Halm) = E,I?n). (7) 

On the other hand, no such assumptions are made for H,, which may explicitly 
depend on time. The states of the background are described by an arbitrary 
orthonormal basis la), and those of the combined system by the tensor product 
of these two bases: 

[ma) E im) @ [a). (8j 

The coupling between the two systems is assumed, for simplicity, to be a direct 
product Hh, = A @ B, where A and B denote two operators, belonging to the atom 
and the background, respectively. The complete Schrodinger equation thus is 

ihd+/dt = (Ha + H, + A 0 R)? (9) 

where + is a linear combination of the basis Vectors (8). The 0 sign will henceforth 
be omitted, as there is no risk of confusion. Obviously, the operators A and B have 
to be written in equation (9) in their Schrodinger representation. We assume that, in 
that representation, A has no explicit time dependence (for example, it may be the 
dipole moment of an atom) but no such assumption is made for B. We shall later 
also need the Heisenberg representation of B, which is 

B H ( ~ )  = U'(fdu)B(i)U(i?to) ('0) 

where U(i , iu)  is a unitary operator satisfying 
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where 

(“+(t,~u)l!N~)). (13) eiE,t/h clnn(t) = 

It is straightforward to show that the Schrodinger equation (9) is equivalent to 

where A,, = (mlAln). 
Assume that the initial state of the combined system is given by equation (12) 

with c,(t ,)  = 1, and all other c,,(tu) = 0. Here, 10) denotes one of the basis 
states of the background subsystem. It may be the wcuum, or a thermal state, or 
any other state resulting from the physical preparation of that background. We are 
interested in the probability of finding the atom in a prescribed final state If), at 
time t, irrespective of the final state of the background. That probability is 

P ( t > t ” )  = CIC,dt)l2 (19  
n 

and depends on both the initial time 1, and the final time t ,  if the background system 
is not invariant under time translations (for example, the situation sketched in figure 1 
is not invariant under a shift of 1). 

For the given initial conditions, and for any I f )  orthogonal to the initial state of 
the atom, equation (14) becomes, in first-order perturbation theory, 

ihdc,,(t)/dt = eiwtA,i(alBH(t)lO) (16) 

where w = (E, - E,) / f i .  It follows that 

(01 BH( 1’) BH( t ” ) lO )  dt’ dt”. (18) 
= I A , i / h 1 2 / t / t  eiw( 1 ” -  1‘) 

10 to  

This result is valid as long as x, P ( t , t , )  << 1. 
perturbation theory becomes inadequate. 

assumed to be a slationary random function, so that the expression 

For longer times, first-order 

In the elementary cases that are commonly discussed in the literature, B H ( t )  is 

W (  t‘, t”) = (01 BH( t’)BH( t”) 10) (19) 

depends only on the time difference 1” - t‘. Moreover, it is usually assumed that, 
if It” - t’l is larger than a brief ‘coherence time’, then IW(t’,t‘‘)l << W(t ‘ , t ’ ) .  
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However, none of these physical assumptions is valid in the present work, and 
therefore more care is needed here. 

Let us change the integration variables from t' and 1" to 

(20) 

(21) 

T = 1" - t' 
and 

U = (t" + t')/2. 

The Jacobian of this transformation is 1. We first perform the integration Over T, for 
k e d  U, and we obtain 

- where '1' T~~ E - T ~ ~ ~  is a function of a, t ,  and tu, as shown in figure 2. 

Plgun 2. Integralion limits of r = t" - t'. for a b e d  value of D = (t" + t')/Z. 

If the background system has a brief coherence time such that W -+ 0 for large 
enough T, the integration limits fT can be replaced by fm ,  and then the integration 
""GL (I w ,,,"La,. 111G rGpl"'CmCL1L U, 1 1  uy Iv i l  llldy arsu UG a,,vwcu W C I I  I, YY "U- 

m t  vanish for large T, but rather has increasingly rapid mcillations which mutually 
cancel in the inner integral in equation (22). An example will be given in the next 
section. In such cases, it is possible to define an instantaneous transition rate 

-..~- - :" .2..:.., m.. -^-,^^^ --_. ^C I m L.. I .. " 8 " -  L^ ̂ I, _I :c rr, _I^^^ 

m 

r ( t )  = dP( t , t , ) /d t  = IAli / f t lZ e'"'W(1 - r / 2 , t  + ~ / 2 ) d r .  (2) L 
It may come as a surprise that this formula has the same general appearance as 

the one occurring in the fluctuation-dissipation theorem. For example, we obtain a 
similar result when we consider quantum transitions induced by an external, classical, 
stochasfic force (Abragam 1961). On the other hand, there can be no doubt that the 
derivation given here fully takes into account the quantum nature of the background 

based solely on the Schrodinger equation, which involves only reversible dynamics. 
The dissipative nature of equation (23) is due to the sum over the final s t a t a  

of the background, in the definition of P(t,t,,). When we discard the background 
degrees of freedom, there is an irreversible loss of information, and the density matrix 
of the atom (or the detector) turns from a pure state into a mixture. 

system: !t does not rely on debatable semiclasslu! argumenu (Senltzlq 1978): !t i3 
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3. Inertial detector in accelerated cavity 

We shall assume for simplicity that our detector of vacuum fluctuations has only 
two internal energy levels, so that its internal state can be  described with notation 
appropriate to a spin-f particle. For a fully relativistic treatment of the detector's 
motion in spacetime, we shall assume that it is a point particle described by a local 
field 

where ak and b ,  are the annihilation operators for a detector 
t+(r , t ) ,  with internal 'spin' up and down, respectively. 

the normal mode 

The %mi!te!!iec den3ity fer 2 detecter mc!ving i!! 2 ...!er fie!.?. 6 wi!! k Eke!? 

(25) 

as 

n = xHg + 31, + X + ( U S ,  + X S , + ) X  

where 'If, involves only the detector's position variables; the internal variables S, 
and S,  are the usual spin matrices (eigenvalues ih/2); w is a constant, such that 
hw is the energy separation of the two levels of the detector in the rest frame of the 
latter; and X is the detector's coupling constant to the Scalar field 4. The interaction 
term in this Hamiltonian density causes transitions between the internal levels of the 
detector. The Occurrence of a transition may be interpreted as the detection of a 
vacuum Buctuatlon of the field. 

If the energies involved in this process are low enough, compared to the detector's 
mass, there is no possibility of creation of detector-antidetector pairs, and it is a good 
approximation to ignore virtual pairs as well. This means that one can use a first- 
quantized formalism for the detector which is interacting with a second-quantized 
scalar field. In quantum theory, the state vector + becomes a function of the 
detector's position r and of its internal 'spin' variable, and afunctional of the field 6 
(that is a function of the amplitudes of all the normal modes-an infinite number of 
variabies). m e r e  is no inconsistency in this hybrid iormaiism. its ciassicai anaiogue 
is the interaction of a point particle with a continuous field, which is a standard 
approach to classical relativistic dynamics. 

We further note that, in lowest-order perturbation theory, the detector's 
translational degrees of freedom are not affected by the scalar field 4. Therefore 
if the detector is massive enough to be localized in a wavepacket much smaller 
than the size of the cavity, its motion can be treated classically. This is a common 
approximation which is certainly valid for particle orbits in electron microscopes or in 
high-energy accelerators. The detector's position r will henceforth be considered as 
a prescribed function of the time 1 (not as an operator). In the Hamiltonian density 
(25), Hp becomes an irrelevant c-number that we may include in the background, or 
simply ignore. 

wc lluw ,CL"l,l L U  L I I C  .n.rnu"rrlgG,sl l G p = > G n , L a L , u , , ,  L11 ","Cl L V  uc auac L V  UJG LllG 

results of the preceding section. Let Q be the Schrodinger representation of the 
scalar field. With the approximations that were discussed above, the only remaining 
terms of the Hamiltonian are 

1.L .̂  .L^ c..n.-xA:..",.- - " - -~"~  _.^. :-.. :.. ,.nl-_ .,. Le ..I.,- .,. ..̂  ̂.I.̂ 

H = H o + u S ,  + XS,@(v,t). (26) 
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In the last term, the field is taken at the detector’s position r ,  which is a prescribed 
function of time. 

To study a concrete example, we shall consider a segment of the detector’s 
trajectory where 1: = constant (that is the detector is at rest in the x t  Lorentz 
frame, as Seen in figure 1). Let us evaluate the transition rate, r( t ) ,  between the 
two levels of the detector. The symbols H, and H, that were used in the preceding 
section correspond to wS, and H,, respectively. We expect r ( t )  to depend on the 
detector’s position, since there is no translation invariance in a cavity of finite size. 

In equation (18), we set 

IAIil2 = (AS,)’= ti2X2/4 (27) 

and we recall that the symbol 4 that was used in section 1 referred to the Heisenberg 
representation of the free scalar field (namely, 4 = QH).  Therefore W ( t ’ , t “ )  is 
the Wightman function given in equation (6), evaluated at a pair of points on the 
detector’s trajectory. For our inertial detector ( x  = constant) we obviously have 
11) < x / c ,  as seen in figure 1, but we shall moreover assume, in order to simplify the 
calculations, that 111 << x / c  (that is the position of the detector is always much closer 
to the apogee of its orbit within the cavity than to the extremities of the latter). We 
thus obtain, from equation (l), 

e = t a n h - ’ ( c t / x )  = ( c t / x ) + ( c t / x ) ’ / 3 + . . .  (28) 

and . 

Again to simplify the calculations, it is convenient to choose z, the height of the 
orbit apogee, such that 

W X l L )  = ( E 1  t €2)/2. (30) 

This choice does not critically affect the final result, as will be shown later. With this 
value of I ,  we have 

sin[nn(( - c1)] = sin(nx/2) - ( c 2 t 2 / 2 x 2 ) n ~ m s ( n a / 2 )  + o(t4) (31) 

whence 

sin[nK(t‘ - ~ ~ ) ] s i n [ n n ( f ’  - t i ) ]  = sin2(nx/2) + o ( t 4 ) .  (32) 

If we had chosen a different value of I ,  there would be additional terms in (32) of 
the order of l o g ( z / L )  - ( E ,  + t2)/2. 

The absence of these terms and the omission of higher order corrections in (32) 
considerably simplify the sum in equation (6), which will now only run over odd n 
(we shall write it as E’): 
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This expreSSiOn is periodic in 0"- e', with period 27r/K. Obviously, there is no finite 
'coherence time' in our problem. 

we now rewrite W in terms of the mriables T and n, defined in the preceding 
section. From equation (B), we have 

eli - e' = + (r3c3/12x3) + 0 ( ~ 5 1 5 / ~ 5 )  (34) 

U = 1 + ( C c T / X ) Z .  

... L--- 
WKIGIG 

(35) 

The inner integral in equation (22) becomes 

Each term of the sum can now be evaluated by the method of steepest descents 
(Erdklyi 1956). Let a' = w + nKuc/x  and bZ = nnc3/4x3,  and consider r as a 
complex variable. The exponent in (36) has extrema (saddle points in the complex r 
"ll"P1 2r 7 

real axis, can be distorted so as to pass through one of these saddle points. We write 
T = C + ia/b, so that 

-cia/& -.e ht.-gr.tic,n pat!!, &gin.!!y &fined a 2 q m e n t  0" the -_ 

exp(ia2r + ibZr3/3) = exp(-abCz - 2n3/3b + ibZC3/3). (37) 

In the vicinity of the saddle point C = 0, this expression behaves like a Gaussian with 
a peak of width (ab)-'Iz. This peak will give the main contribution to the integral if 
its width is well inside the original integration domain, that is if 

T >> [ ( W +  nKlLC/Z)(nKC3/4X3)]-1/4 > (WKC3/423)-'/4 

(U- 1,) and ( 1  - n)  >> ( z / c ) ( 4 c / z w ~ ) ' / ~ .  

(38) 

which means that both 

(39) 

Recall that K, which is given by equation (9, the inverse cavity length in units g / n c 2 ,  
and is a very large number for a cavity of reasonable size. Likewise, x w / c  is very 
large, if the detector has a reasonable energy splitting T u .  Therefore the inequalities 
{.77, 'I,., "U,, ~ I Y I I I " ,  u,%.,.,y'L "..".l Y - "0 "U" Y - I, a. "..."a, .._U. I.. I .""U& l "LL  a,," 

upper right corners of the square in figure 2. 
We shall henceforth restrict our attention to observation times that are long 

enough, 

1-20, ...-,I ~ n . : ~ f n r l  arm-+ ..,ha- - - 4 0-A - + nqm~1.1 r h o  I n v m m r  In61 

1 - 1, >> ( z / c ) (4c / zwr t )1 /4  (40) 

so that both inequalities in (39) are satisfied, and yet are short enough to have 
E, P ( t , t , )  << 1, as otherwise perturbation theory would not be valid. These 
conditions on the observation time are similar to those that have to be imposed in the 
case of mansitions to a continuum, if we want to obtain a roughly exponential decay 
law: if the observation time is too short or too long, the decay law of an unstable 
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system is not exponential (Peres 1980). In the present case too, the existence of three 
wide& different time scales b essential for the validity of our results. 

If equation (40) is satisfied, we make only a negligible error if we replace, in 
equation (36), the finite integration limits &T by km. This is an example of the 
situation discussed at the end of the preceding section: the integrand in (36) does 
not vanish for large 171, but it has increasingly rapid oscillations, due to the r3 term 
in the exponent, and these oscillations mutually cancel. 

~ 1 1 1 1  UK IICW urrcgrauun IIIIIIW i m ,  each ierm of iiie sum in j36j can be expressed 
by means of Airy functions (Abramowitz and Stegun 1%8), giving 

I,,..._ _L^ ____:..A-"-...:-- a:...:.- 

Since w >> c/x, the argument of the Airy function is large and we can replace that 
function by its asymptotic expansion 

This is a rapidly decreasing function of z ,  and the main contribution to the sum in 
equation (41) obviously comes from those n for which z is minimal. This minimum 
o~cur s  for 

2nn E xw f c u  = N (43) 

which b a very large number. The fact that high-frequency modes are those which 
UII.LL."",C LL.".,L L" 1 !,b, LO, 0YpyV.W "". " I L " , I , * b  L;"C.,U "L'XL ut1  y'Lccwc L U c ( I I , U , ,  U, 

the detector, namely = + F z ) ,  has no critical influence and that the transition 
probability is a smooth function o f t  and 1.  

The next step is to expand the exponent in (42) into a Thylor series around its 
maximum, giving 

mn+r:h,.m mnit tn D I +  + \ r..nnnrlr n... i-r..:r:.m n . . ~ r s  r h n t  thn -mAm In.--+:-- nf 

exp (+3/2) E exp (-2&vu3/2) exp [(2nK - N ) z P / ~ ~ N ]  , (44) 

As the main contribution to the sum in (41) comes from a relatively narrow range, 
An < n z N/2n, it is a good approximation to replace all the coefficients n by 
N / ~ K  (except in the last exponent) and then to substitute 

P' t ... + L W . . . d n / 2 .  
n 

(45j 

Moreover, we can replace the lower integration limit 0 by -CO, with a negligible 
error. 'hiis gives a Gaussian integral which is readily evaluated, and we finally obtain 

Therefore the transition rate is 
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Note that f i x  = (x2 + c2t2)'/Z, so that r depends on the detector's position within 
the as we expected. It is maximal when the detector is at the highest point of 
its ballistic orbit At that point, the relative acceleration of the vacuum fluctuations, 
with respect to the inertial detector, is g = c 2 / x .  We thus have 

where E = fw is the energy difference between the two levels. 
This result holds only for transitions from the ground state to the excited state 

(w > 0), because the various approximations that we have just made would not be 
valid for w < 0. For de-excitations (w < 0), the Airy functions have a negative 
argument, which gives them an oscillatory behaviour (Abramowitz and Stegun 1968). 

expression, of order unity, whose exact value is practically irrelevant: for reasonable 
values of E and g,  the exponent in (48), is a large negative number, and r is so 
small that the probability of finding the detector in its ground state is always close to 
1. 

The transitions between the two levels will therefore reach equilibrium (if there 

when the respective occupation numbers are in a ratio close to e-zJsEc/gfr, i.e. as 
if the detector had a temperature kT = g f i / 2 f i c .  This is higher than the Unruh 
temperature (for a linearly accelerated detector in a Minkowski vacuum) by a factor 
r / f i  rr 1.8. However, this cannot he considered as a true thermal equilibrium, 
because the typical wavelength of thermal radiation at that temperature, about c 2 / g ,  

q;?Onp-t;-! f2ecr $* .="..n+:nn m,r: :he8 m " l a m A  bf a ,.,...."l:,..,+~rl _,,. 
.'Y'"W" P-'-" -y"""".. 

k enough &me fnr that, which depen& the strength of the cq!!i.n.g constant A) 

W.!d he many orders of magnitude !arger than fhe size nf the cavity, 
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